Autour du théorème des nombres premiers

Samuel Rochetin

Lundi 29 janvier 2018

Exercice. Soit p_n l'énième nombre premier. Montrer que $n \ge 2 \implies p_n < n^2$.

Solution. Remarquons tout d'abord que $p_1=2\geq 1=1^2.$

L'implication est vérifiée $\forall n \in [2; 5]$.

Eric BACH et Jeffrey SHALLIT ont publié en 1996 la majoration $\forall n \geq 6, p_n < n \ln n + n \ln \ln n$. Il suffit donc de déterminer s'il existe des entiers n tels que $n \ln n + n \ln \ln n \leq n^2$. Or, n > 0 et la fonction exponentielle est croissante donc cette inégalité est équivalente à $n \ln n \leq \exp n$. Une simple étude de fonction permet de montrer que cette inégalité est bien vérifiée pour tout entier naturel $n \geq 6$.